ارزیابی عملکرد سمپاش زراعی نرخ متغیر با استفاده از شبکه های عصبی مصنوعی

نویسندگان
چکیده

جهت ارزیابی عملکرد پاشش یک سمپاش زراعی نرخ متغیر، از روش شبکه عصبی مصنوعی استفاده شد. داده های لازم برای مدل سازی، از آزمون های مزرعه ای به دست آمد. برای مدل سازی بده خروجی افشانک ها،727 شبکه با چهار نوع مدل عصبی مصنوعی خطی، پرسپترون چندلایه، تابع پایه شعاعی و رگرسیون تعمیم یافته آزمون شدند. برای هر افشانک 45، 22 و 23 داده به ترتیب برای آموزش، اعتبارسنجی و آزمایش استفاده شد. مدل تابع پایه شعاعی با یک لایه ورودی، 4 لایه پنهان و4 لایه خروجی کمینه خطا به عنوان بهترین مدل انتخاب شد. برای سنجش توانایی مدل عصبی در پیش گویی بده افشانک ها، نتایج حاصل از این روش با مدل آماری مقایسه شد. بر اساس نتایج، میانگین مقادیرr2 افشانک ها در مدل آماری برابر با 980/0، 979/0، 981/0 و 980/0 و  در مدل های عصبی مذکور به ترتیب برابر با 994/0، 988/0، 997/0 و 990/0 به دست آمد. هم چنین میانگین ضریب تغییرات با استفاده از مدل های آماری و شبکه عصبی به ترتیب برابر با 96/18 درصد و 05/19 درصد بود. نتایج نشان داد، که مدل شبکه عصبی مصنوعی در مقایسه با مدل آماری روش دقیق تری برای پیش گویی بده سمپاش بر اساس تغییرپذیری های مکانی سم در مزارع است

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پایش تغییرپذیری فرآیندهای چند مشخصه وصفی و متغیر با استفاده از شبکه عصبی مصنوعی

امروزه در برخی محیط‏های تولیدییا خدماتی، کیفیت محصول یا عملکرد فرآیند به وسیله ترکیبی از مشخصه‏های کیفی متغیر و وصفی همبسته توصیف می‏گردد. بر اساس آخرین اطلاعات مؤلفان، تا کنون هیچ روشی برای پایش ماتریس واریانس- کوواریانس این گونه فرآیندها ارائه نشده است. در این مقاله، یک شبکه عصبی مصنوعی برای پایش تغییرپذیری یک فرآیند چند مشخصه وصفی و متغیر ارائه شده است. شبکه ارائه شده نه تنها قادر به کشف وضع...

متن کامل

مقایسه قدرت مدل های شبکه عصبی مصنوعی و شبکه عصبی پویا در پیش بینی نرخ ارز: کاربردی از تبدیل موجک

این مطالعه تلاشی است در جهت به­کارگیری ترکیب مدل شبکه­ی عصبی پویا و تجزیه­ی موجک جهت میسر نمودن امکان انتخاب یک الگوی بهینه جهت پیش­بینی متغیر مذکور می­باشد. جهت تحقق این مهم، از داده­های سری­زمانی ماهانه­ی نرخ ارز طی بازه­ی زمانی فروردین 1377 الی آذر 1391، که مشتمل بر 177 مشاهده بوده که از این بین، تعداد 150 مشاهده جهت مدل­سازی­ها استفاده شده و تعداد 27 مشاهده نیز جهت شبیه­سازی و یا به بیان دی...

متن کامل

مدل‌سازی بازده کششی تراکتور با استفاده از شبکه عصبی مصنوعی

در این مطالعه آزمایش­های مزرعه­ای در شرایط متفاوت عمق شخم، سرعت پیشروی و میزان وزنه­های متصل به تراکتور انجام شد. در این تحقیق، عمق شخم در چهار سطح 5، 10، 15 و 20 سانتی­متر، سرعت­های پیشروی در چهار سطح 5/2، 5/3، 5/4 و 5/5 کیلومتر بر ساعت و میزان سنگین­کننده نیز در چهار سطح 0، 40، 80 و 120 کیلوگرم قرار گرفت. شبکه­های عصبی مدل­سازی شده در این تحقیق که به­ منظور پیش­بینی بازده کششی تراکتور مورد اس...

متن کامل

تعیین ارزش دارایی‌های نامشهود با استفاده از شبکه عصبی مصنوعی

درک عوامل موثر بر ارزش شرکت برای سرمایه‌گذاران و اعتباردهندگان پیش از اتخاذ تصمیمات سرمایه‌گذاری یا اعطای تسهیلات، امری حیاتی است. از آن‌جایی که اقتصاد دانش‌محور در حال تکامل یافتن است، روش ایجاد ارزش شرکتی از شیوه سنتی مبتنی بر دارایی‌های فیزیکی به دانش نامشهود منتقل شده است. از این‌رو در آینده نه چندان دور، ارزش‌گذاری دارایی‌های نامشهود به موضوع مهمی در اقتصاد مبدل خواهد شد. این مطالعه بر آن ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
مهندسی زیست سامانه

جلد ۵، شماره ۳، صفحات ۳۵-۴۶

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023